

- Spiral Wound
- Semi-Metallic
- Ring Joint
- Boiler
- Compressed
- Flexible Graphite
- Cork
- Mica
- Rubber
- PTFE
- EMI / RFI Shielding



# GASKET & RUBBER



## **Robco Gasket & Rubber for Heavy Industry**

We believe that our value added service, technical and manufacturing expertise can provide annual savings that drastically outweigh your actual purchase costs.

### **Manufacturing Capability**

To remain competitive on the world market today, we invest in state-of-the-art equipment to produce quality parts at the best possible cost; whether in the fabrication of small batches of intricate parts or for large volume production. We are ready!





### **Engineering Group**

Every day, we develop custom solutions that will suit YOUR applications. You make our work exciting by using our abilities to take up your technical challenges and provide solutions that will fit your needs.





### A Long History...

Time flies! 100 years in business means a lot of experience under our belt in dealing with all kinds of applications. The culture of supporting our customers with products that provide value remains intact. You are in good hands with us!





### **Expert Customer Service**

Our on-site Technicians, Gasket Specialists and Customer Service departments are available to guide you and answer all your questions in the selection of the ideal product for your application.







### **Elastomer and Gasket Sheeting Materials**

Your requirements of specific types of soft gaskets can be fulfilled from our vast inventory of raw materials: various grades of cork, sponge rubber, compressed sheet, flexible graphite, modified-PTFE and all popular elastomers such as Natural Rubber, SBR, EPDM, Chloroprene, Nitrile, Hypalon and Viton®.





### **EMI / RFI Shielding Materials**

We fabricate with EMI / RFI (electro-magnetic or radio frequency interference) shielding materials that meet MIL-DTL-83528 specifications, in a wide array of shapes and extrusions.





### We know the Industry

Over the last century, we have supplied gasket materials for all possible applications. Our specialized engineers will provide information and advice towards identifying the optimal product for any application.





#### Metal Jacketed

### Metal Jacket



### Solid design - Solid results

Metal jacket gaskets are the most basic type of semimetallic gasket combining the high pressure suitability and blow-out resistance of metallic materials with the improved compressibility of soft materials.



















### **Graphite Coated**

CMGC gaskets featuring a corrugated metal core with a highly compressible graphite overlay, delivering a reliable gasket with the ability to seal at low bolt loads, conform to minor flange imperfections and be manufactured in virtually any configuration.









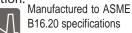




### **Enviroflex** and Enviroflex MGM



Spiral Wound gaskets consist of metal strips spirally wound with a soft sealing filler material. This sealing element is assembled with or without a metallic centering and/or inner ring(s). Made to fit #150 to #2500 pipe class flanges, they can be custom-made in various alloys and fillers to meet your requirement, custom sizes and application.
















# Maxiprofile

### Semi-Metallic Gasket

The Maxiprofile is a composite gasket that utilizes a serrated metal core with a soft facing material. The metal core is machined on each contact face with concentric serrations providing high pressure areas and ensuring that the soft coating flows into any imperfections in the flange even at relatively low bolt loads.













## **Ring Joint**

### **Metallic Ring Joint Gasket**

Metallic ring joint gaskets are heavy duty, high-pressure gaskets largely used in offshore petrochemical applications. These precision-engineered components designed for use in conjunction with precision-machined flanges are manufactured in accordance with ASME B16.20 and API 6A.







Metal jacket gaskets offer an economical seal where sealing faces are narrow.

### Corrugated Metal

| Core Mater           | rials Available:     |
|----------------------|----------------------|
| 304 Stainless Steel  | Inconel© 600 & 625   |
| 316 Stainless Steel  | Incoloy© 800 & 825   |
| 316L Stainless Steel | Grade 2 & 7 Titanium |
| 347 Stainless Steel  | Alloy 20             |
| 410 Stainless Stee   | Hastelloy© C276      |
| Duplex 2205          | Monel© 400           |
|                      |                      |

A logical choice for standard flange, heat exchanger, boiler and valve sealing applications.

### **Enviroflex Spiral Wound Gasket**

| Filler Material        | Max. Temp. |                     |            |
|------------------------|------------|---------------------|------------|
| Graphite               | 850°F      |                     |            |
| PTFE                   | 500°F      |                     |            |
| Mica                   | 1832ºF     |                     |            |
| Winding Material       | Max. Temp. | Winding Material    | Max. Temp. |
| Stainless Steel 304    | 1200ºF     | Stainless Steel 347 | 1200°F     |
| Stainless Steel 316L   | 1200°F     | Monel 400           | 1472ºF     |
| Stainless Steel 316 Ti | 1200°F     | Carbon Steel        | 932°F      |

<sup>\*</sup>Enviroflex MGM withstands higher temperatures

### Maxiprofile Semi-Metallic Gasket

| Facing Material      | Max. Temp. | May Drass         |            |
|----------------------|------------|-------------------|------------|
| Graphite             | 1022ºF     | Max. Pressi       | ıre        |
| PTFE                 | 500°F      | 6000 psi          |            |
| Mica                 | 1832F      | 9000 bai          |            |
| Core Material        | Max. Temp. | Core Material     | Max. Temp. |
| Stainless Steel 316L | 1472ºF     | Inconel 600 & 625 | 1832ºF     |
| Stainless Steel 304  | 1202ºF     | Incoloy 825       | 1832ºF     |
| Monel 400            | 1472ºF     | Hastelloy B2      | 1832ºF     |
| Nickel 200           | 1112ºF     | Hastellov C-276   | 1832°F     |

Suitable for a wide range of operating conditions

| Material         | Brinell Hardness | Temperature Limitation | Identification |
|------------------|------------------|------------------------|----------------|
| Soft Iron        | 90               | -60 to 400°C           | D              |
| Low Carbon Steel | 120              | -40 to 500°C           | S              |
| 4-6% Cr ½% Mo:F5 | 130              | -250 to 500°C          | F5             |
| 304 SS           | 160              | -250 to 650°C          | S304           |
| 316 SS           | 160              | -110 to 800°C          | S316           |
| 321 SS           | 160              | -250 to 870°C          | S321           |
| 347 SS           | 160              | -250 to 870°C          | S347           |
| 410 SS           | 170              | -20 to 500°C           | S410           |
| Titanium         | -                | 350°C                  | TI             |
| Inconel          | -                | 500°C                  | 625            |
| Incoloy          | -                | 500°C                  | 825            |
| Hastellov C-276  | -                | 1000°C                 | C-276          |







### Robco 200-HM

### 99% Pure Graphite without reinforcemen

A homogenous graphite gasket sheet for use in sealing conditions where low internal pressures exist. High quality industrial-grade (99% carbon) sealing element with low ash content and low leachable chloride levels, offers high compressibility and low creep.

















### Stainless Steel Foil-reinforced Graphite She

Robco 204 SFI is a material of choice for sealing medium pressure applications. Robco 204 SFI can be used in a wide variety of chemicals applications.



FLEXIBLE GRAPHITE



















### Stainless Steel Tang-reinforced Graphite Shee

Robco 210 STI excels in aggressive, high temperature, high pressure applications. Can replace spiral wound gaskets in large and custom sizes. 210 STI is the choice material to ensure a long-lasting seal in difficult applications.















# KLINGER Top-Sil-ML1

### **Synthetic Fibers and Elastomers**

A combination of synthetic fibers and various elastomers bound in a multi-layer structure. Top-Sil ML1 has excellent properties such as less creep, high permissible load, delayed aging and leak-free sealing at high temperatures. Suitable for use in steam, oils, fuels, hydrocarbons and potable water.









### **KLINGER Quantum**

### 2nd Generation Compressed Fiber Sheeting

Exclusively HNBR bound, Quantum offers excellent temperature resistance across a much broader range of chemicals than all other fiber reinforced gasket materials. Klinger Quantum is FDA compliant for food applications and fire tested as per API 607/ISO 10497.



















www.robco.com

| Engineered Solutions since 1911 |                      | Robco 200-HM        |
|---------------------------------|----------------------|---------------------|
| Compressibility                 | Recovery             | Creep Relaxation    |
| 44%                             | 15% min.             | 5%                  |
| Temp. Oxidizing                 | Temp. Mild-Oxidizing | Temp. Non-Oxidizing |
| -400°F - 850°F                  | -400°F - 1200°F      | -400°F - 5400°F     |
| Gasket Factor / m               | Gasket Factor / y    | Sealability         |
| 1.25                            | 700 psi              | 0.5 ml/hr           |

Low pressure applications

60"L x 60"W

| vv | <br>1/32 | - 1/0 |  |
|----|----------|-------|--|
|    |          |       |  |

|                   |                      | Robco 204-SFI       |
|-------------------|----------------------|---------------------|
| Compressibility   | Recovery             | Creep Relaxation    |
| 42%               | 17% min.             | 5%                  |
| Temp. Oxidizing   | Temp. Mild-Oxidizing | Temp. Non-Oxidizing |
| -400°F - 850°F    | -400°F - 1200°F      | -400°F - 1800°F     |
| Gasket Factor / m | Gasket Factor / y    | Sealability         |
| 2                 | 900 psi              | NA                  |

**General Purpose** 

← 60″L x 60″W

|                   |                      | 110000 210 311      |
|-------------------|----------------------|---------------------|
| Compressibility   | Recovery             | Creep Relaxation    |
| 42%               | 17% min.             | 5%                  |
| Temp. Oxidizing   | Temp. Mild-Oxidizing | Temp. Non-Oxidizing |
| -400°F - 850°F    | -400°F - 1200°F      | -400°F - 5400°F     |
| Gasket Factor / m | Gasket Factor / y    | Operating Pressure  |
| 2                 | 2500 psi             | 1200 psi max.       |

High-pressure / High temperature



### Klinger Top-Sil-ML1

| Compressibility     | Recovery             | Creep Relaxation |
|---------------------|----------------------|------------------|
| 9%                  | 50% min.             | NA               |
| Thickness Decrease@ | Compression 7251 psi | Sealability      |
| @73ºF 8%            | @572ºF 15%           | NA               |
| Thickness Increase  | after immersion in   | Density          |
| ASTM Oil IRM 4%     | ASTM Fuel B 8%       | 106 lb/ft³       |

Innovative multi-layered material





### Robco Quantum

| Compressibility    | Recovery              | Stress Relaxation      |
|--------------------|-----------------------|------------------------|
| 10%                | 60% min.              | BS7531 3916 psi        |
| Klinger Hot Compr  | ession Test, 7251 psi | Thickness Decrease     |
| @73ºF 10%          | @572ºF 14%            | @752ºF 20%             |
| Thickness Increase | after immersion in    | Density                |
| ASTM Oil 3 3%      | ASTM Fuel B 5%        | 106 lb/ft <sup>3</sup> |

Best innovation in the fiber reinforced gasket composite





78"L x 59"W 1/32" - 1/8"

### KLINGERsil C-4300

### **Aramid Fibers**

C-4300 is a general purpose material manufactured from aramid fibers with an NBR binder and is commonly used with hydrocarbons, fuels, oils and water. Provides good sealability and good chemical resistance.











### KLINGERsil C-4401



### **Synthetic Fibers**

Our most popular material suitable for use with air, water, steam, oils, fuels, and gases. Particularly suited for use in internal combustion engines, compressors, and hydraulic applications.















### KLINGERsil C-4408



### Wire Reinforced

C-4408 material is a synthetic fiber based material with a nitrile binder reinforced with a steel woven mesh insert. Recommended for applications under high stress, vibration and fluctuating temperatures and pressures.



COMPRESSED MATERIAL







### KLINGERsil C-4409

#### **Carbon Steel Insert**

C-4409 is a synthetic fiber and nitrile binder reinforced with a galvanized low carbon steel insert excellent for use in hot gases, vibration and high temperature and pressure applications. C-4409 is used as a replacement for Spiral Wound Gaskets.









### KLINGERsil C-4430

### **Fiberglass and Aramid Fibers**

Glass fiber based with an NBR binder for use in a wide range of chemical applications. A premium grade compressed fiber material with exceptional compressive strength and good chemical and temperature resistance. For oil, steam, hydrocarbon, oxygen and water applications.











www.robco.com

| Engineered Solutions since 1911 |                      | Klingersil C-4300      |
|---------------------------------|----------------------|------------------------|
| Compressibility                 | Recovery             | Creep Relaxation       |
| 10%                             | 50% min.             | 25 %                   |
| Thickness Decrease@             | Compression 7251 psi | Sealability            |
| @73ºF 10.5%                     | @572ºF 25%           | <0.25 ml/hr            |
| Thickness Increase              | after immersion in   | Density                |
| ASTM Oil 1 5%                   | ASTM Fuel B 10%      | 100 lb/ft <sup>3</sup> |

General purpose sheet with good chemical resistance

60"L x 60"W 1/64" - 1/8"



| Klingersil C-440 |
|------------------|
|------------------|

| Compressibility     | Recovery             | Creep Relaxation       |
|---------------------|----------------------|------------------------|
| 7%                  | 50% min.             | 20%                    |
| Thickness Decrease@ | Compression 7251 psi | Sealability            |
| @73ºF 10.5%         | @572ºF 17%           | <0.5 ml/hr             |
| Thickness Increase  | after immersion in   | Density                |
| ASTM Oil 1 5%       | ASTM Fuel B 7%       | 112 lb/ft <sup>3</sup> |

Good general purpose material



|                                       |                      | Klingersil C-4408      |
|---------------------------------------|----------------------|------------------------|
| Compressibility                       | Recovery             | Creep Relaxation       |
| 8%                                    | 50% min.             | 20%                    |
| Thickness Decrease@                   | Compression 7251 psi | Sealability            |
| @73ºF 10%                             | @572ºF 22%           | NA                     |
| Thickness Increase after immersion in |                      | Density                |
| ASTM Oil 1 5%                         | ASTM Fuel B 5%       | 119 lb/ft <sup>3</sup> |

Suitable for fluctuating temperatures & pressures

60"L x 60"W 1/32" - 1/8"



| Compressibility                         | Recovery       | Creep Relaxation       |
|-----------------------------------------|----------------|------------------------|
| 7%                                      | 50% min.       | 20%                    |
| Thickness Decrease@Compression 7251 psi |                | Sealability            |
| @73ºF 10%                               | @572ºF 10%     | NA                     |
| Thickness Increase after immersion in   |                | Density                |
| ASTM Oil 1 5%                           | ASTM Fuel B 5% | 125 lb/ft <sup>3</sup> |

Excellent for hot gases and high pressure applications



### Klingersil C-4430

| Compressibility                         | Recovery       | Creep Relaxation |
|-----------------------------------------|----------------|------------------|
| 9%                                      | 50% min.       | 20%              |
| Thickness Decrease@Compression 7251 psi |                | Sealability      |
| @73ºF 8%                                | @572ºF 11%     | NA               |
| Thickness Increase after immersion in   |                | Density          |
| ASTM Oil 1 5%                           | ASTM Fuel B 5% | 96 lb/ft³        |

Premium grade material and excellent steam sheet





60"L x 60"W 1/64" - 1/8"

### KLINGERsil C-4433

### Fiberglass, Aramid & Inorganic Fibers

Great general purpose material with good chemical resistance and mechanical properties. Best overall steam sheet with the best load bearing capability available in an asbestos-free gasket. C-4433 has passed the fire test criteria of API 607 Fourth Edition.













### **KLINGERsil C-4439**

### Fiberglass & Aramid, Steel Reinforced

A top quality synthetic fiber based material with a nitrile rubber binder. The addition of galvanized low carbon steel reinforcement provides high pressure resistance. C-4439 has passed the fire test criteria of API 607 Fourth Edition.















### KLINGERsil C-4500

#### **Carbon Fibers**

A premium grade carbon fiber based material with an NBR binder designed for use under high temperatures and pressures. A universal material with good steam, oil, and chemical resistance. Particularly suited for use in highly alkaline applications, high internal pressure applications and those requiring good load bearing characteristics.









### KLINGERsil C-4509

### Carbon Fibers, Steel reinforced

A top quality carbon fiber based material with a nitrile rubber binder and an expanded steel reinforcement. Provides greater resistance to thermal degradation in high pressure applications and increased temperatures. Recommended in a wide range of media including oils, hydrocarbons, alkalis and steam.













### KLINGERsil C-5400

### **Synthetic Fibers and Neoprene**

C-5400 is a blend of synthetic fibers with a neoprene binder. Introduced for service with refrigerants and various oils. Used in all industries where refrigerants are the major service, such as the Food Industry.









www.robco.com

| Engineered Solutions since 1911       |                      | Klingersil C-4433      |
|---------------------------------------|----------------------|------------------------|
| Compressibility                       | Recovery             | Creep Relaxation       |
| 7%                                    | 60% min.             | 20%                    |
| Thickness Decrease@                   | Compression 7251 psi | Sealability            |
| @73ºF 7%                              | @572°F 8%            | <0.5 ml/hr             |
| Thickness Increase after immersion in |                      | Density                |
| ASTM Oil 1 5%                         | ASTM Fuel B 7%       | 112 lb/ft <sup>3</sup> |

Best general purpose sheet. Fire-tested

60"L x 60"W 1/32" - 1/8"



### Klingersil C-4439

|                                         |                   | Tunigeran e 1133 |
|-----------------------------------------|-------------------|------------------|
| Compressibility                         | Recovery          | Creep Relaxation |
| 7%                                      | 50% min.          | 20%              |
| Thickness Decrease@Compression 7251 psi |                   | Sealability      |
| @73ºF 8%                                | @572°F 4%         | NA               |
| Thickness Increase after immersion in   |                   | Density          |
| ASTM Oil 1 5%                           | ASTM Fuel B 5-10% | 131 lb/ft³       |

Fire-tested and suitable for high pressures



60"L x 60"W 1/16" - 1/8"

### Klingersil C-4500

| Compressibility     | Recovery             | Creep Relaxation |
|---------------------|----------------------|------------------|
| 12%                 | 60% min.             | 20%              |
| Thickness Decrease@ | Compression 7251 psi | Sealability      |
| @73ºF 10%           | @572ºF 15%           | <0.30 ml/hr      |
| Thickness Increase  | after immersion in   | Density          |
| ASTM Oil 1 5%       | ASTM Fuel B 5%       | 87 lb/ft³        |

Suitable for wide range of chemical applications



60"L x 60"W 🗍 1/64" - 1/8"

### Klingersil C-4509

| Compressibility     | Recovery             | Creep Relaxation |
|---------------------|----------------------|------------------|
| 12%                 | 70% min.             | 20%              |
| Thickness Decrease@ | Compression 7251 psi | Sealability      |
| @73ºF 9%            | @572°F 7%            | NA               |
| Thickness Increase  | after immersion in   | Density          |
| ASTM Oil 1 5%       | ASTM Fuel B 5%       | 125 lb/ft³       |

Excellent resistance to thermal degradation

↔ 60″L x 60″W



### Klingersil C-5400

| Compressibility                         | Recovery        | Creep Relaxation |
|-----------------------------------------|-----------------|------------------|
| 8%                                      | 50% min.        | 20%              |
| Thickness Decrease@Compression 7251 psi |                 | Sealability      |
| @73ºF 11%                               | @572ºF 21%      | <0.20 ml/hr      |
| Thickness Increase after immersion in   |                 | Density          |
| ASTM Oil 1 5%                           | ASTM Fuel B 10% | 106lb/ft³        |

Designed for use with refrigerants

80"L x 80"W Available in 1/8" thick





### KLINGERsil C-6400



### **Synthetic Fibers**

General purpose commercial material with synthetic fibers and an SBR binder. Suitable for oils, water, light/low pressure steam, and gases. This material has good swell characteristics, yielding a more tightly sealed joint.







### **KLINGERsil C-7400**



### Synthetic Fibers

Engineered synthetic material to handle severe service, especially caustics because of its EPDM binder. This style has proven outstanding against light steam duty. Prime industries include pulp & paper, power generation and chemical.







### **KLINGERsil C-8200**



### **Synthetic Fibers**

C-8200 is a compressed fiber material developed for use with a broad range of chemicals; provides particularly good resistance to strong acids and alkalis. C-8200 is an economical alternative to PTFE-based materials in less aggressive applications.











### **Robco Milam PSS**



### **Reinforced Mica Sealing Material**

Milam-PSS is an asbestos free mica based sealing material reinforced with a stainless steel tanged insert. Specifically designed for hot, dry gas applications. The outstanding chemical resistance of mica also makes the gasket suitable for a wide range of other applications.



### **KLINGER Thermica**



### **High Temperature Gasket Material**

High temperature material with a nitrile binder. The addition of mica increases usable temperature range. Exhibits excellent leak tightness, thermal stability and load bearing properties. Suitable for a wide range of low pressure applications including oils, fuels, steam, hydrocarbons.















www.robco.com

| Engineered Solutions since 1911         |                 | Klingersil C-6400      |
|-----------------------------------------|-----------------|------------------------|
| Compressibility                         | Recovery        | Creep Relaxation       |
| 8%                                      | 50% min.        | 20%                    |
| Thickness Decrease@Compression 7251 psi |                 | Sealability            |
| @73ºF 12%                               | @572ºF 11%      | <0.20 ml/hr            |
| Thickness Increase after immersion in   |                 | Density                |
| ASTM Oil 1 10%                          | ASTM Fuel B 10% | 112 lb/ft <sup>3</sup> |

Good swell characteristics

60"L x 60"W



Klingersil C-7400

|                                         | Talligeral C / 100                            |
|-----------------------------------------|-----------------------------------------------|
| Recovery                                | Creep Relaxation                              |
| 50% min.                                | 25%                                           |
| Thickness Decrease@Compression 7251 psi |                                               |
| @572ºF 5%                               | <0.30 ml/hr                                   |
| Thickness Increase after immersion in   |                                               |
| ASTM Fuel B 5-20%                       | 94 lb/ft³                                     |
|                                         | 50% min.<br>Compression 7251 psi<br>@572°F 5% |

Designed to handle strong chemicals at lower bolt loads

→ 60″L x 60″W



|                                         |                 | 141119 c1311 c 0200    |
|-----------------------------------------|-----------------|------------------------|
| Compressibility                         | Recovery        | Creep Relaxation       |
| 9%                                      | 50% min.        | 30%                    |
| Thickness Decrease@Compression 7251 psi |                 | Sealability            |
| @73ºF 7%                                | @572ºF 17%      | <0.30 ml/hr            |
| Thickness Increase after immersion in   |                 | Density                |
| ASTM Oil 1 5%                           | ASTM Fuel B 10% | 106 lb/ft <sup>3</sup> |

Excellent choice for alkalis & acid resistance

←→ 60″L x 60″W



1/64" - 1/8"

#### **Robco Milam PSS**

| Compressibility | Recovery        | Stress Relaxation             |
|-----------------|-----------------|-------------------------------|
| 15% - 23%       | 40% - 50% min.  | 50MPa/300°C 5801psi           |
| Int. Pressure   | Gas Leakage     | Stress Relaxation             |
| 29 psi          | >100 ml/min     | 2600 - 4641psi<br>40MPa/300°C |
| Min. Temp.      | Max. Temp.      | Stress                        |
| NA              | 1472ºF - 1832ºF | 11602 - 14503 psi             |

Good for exhaust manifolds, turbines, turbo chargers, and air heat exchangers. 47"L x 40"W 1 0.051" min.

Klinger Thermica

| Compressibility     | Recovery             | Creep Relaxation |
|---------------------|----------------------|------------------|
| 12%                 | 55% min.             | NA               |
| Thickness Decrease@ | Compression 7251 psi | Sealability      |
| @73ºF 17%           | @572ºF 13%           | NA               |
| Thickness Increase  | after immersion in   | Density          |
| ASTM Oil IRM 8%     | ASTM Fuel B NA       | NA               |

Excellent stability at high temperatures



→ 78″L x 59″W



# KLINGER Top-Chem-2000

### Fire-Safe and Chemically Resistant PTFE

Heavy-duty modified PTFE material manufactured with the addition of silicon carbide to improve the mechanical properties of the PTFE based material. Greatly increased compressive strength and resistance to creep while maintaining excellent chemical resistance. Used in food, pharmaceutical and chemically aggressive applications.



### KLINGER Top-Chem-2003

### **Resilient at Low Bolt Load PTFE**

Modified PTFE designed for use in low gasket load applications. Glass microspheres aid compressibility and general mechanical strength Developed for use with glass-lined flanges and other situations where compressive load is limited.



# KLINGER Top-Chem-2005

### **PTFE for Strong Acids**

Top-Chem-2005 is a modified PTFE optimized for use in acidic applications. The addition of glass improves mechanical properties of the PTFE and increases operational range of PTFE based materials. Not recommended with strong alkalis.



# KLINGER Top-Chem-2006

### **PTFE for Strong Alkalies**

Top-Chem-2006 is a modified PTFE optimized for use in alkaline applications. The addition of barium sulfate improves mechanical properties of the PTFE and increases operational range of PTFE based materials. Not recommended with strong acids.



### **KLINGER Soft-Chem**

### **Highly Compressible Expanded PTFE**

A pure, expanded PTFE material designed for use in low bolt load applications. Offers improved compressive strength and improved creep resistance. Soft-Chem is suitable for use in food and pharmaceutical duties and can be used in glass-lined, plastic and steel flanges.







### Klinger Top-Chem-2000

| Compressibility                       | Recovery             | Creep Relaxation       |
|---------------------------------------|----------------------|------------------------|
| 2%                                    | 55% min.             | NA                     |
| Thickness Decrease@                   | Compression 7251 psi | Sealability            |
| @75°F 2%                              | @480°F 5%            | <0.5 ml/min            |
| Thickness Increase after immersion in |                      | Density                |
| Sulfuric Acid 1%                      | Nitric Acid 2%       | 156 lb/ft <sup>3</sup> |

Top-Chem-2000 is fire-safe according to API 6FA and ISO 10497 as well as TA-Luft (Clean Air) approval

60"L x 60"W 0.040" - 1/8"

### Klinger Top-Chem-2003

| Compressibility     | Recovery             | Creep Relaxation       |
|---------------------|----------------------|------------------------|
| 18%                 | 40% min.             | NA                     |
| Thickness Decrease@ | Compression 3625 psi | Sealability            |
| @75°F 9%            | @480°F 38%           | <0.1 ml/min            |
| Thickness Increase  | after immersion in   | Density                |
| Sulfuric Acid 1%    | Nitric Acid 5%       | 106 lb/ft <sup>3</sup> |

Top-Chem-2003 can be used for food, pharmaceutical, and chemically aggressive applications. Top-Chem-2003 has TA-Luft (Clean Air) approval

60"L x 60"W 0.040" - 1/8"

### Klinger Top-Chem-2005

| Compressibility     | Recovery             | Creep Relaxation       |
|---------------------|----------------------|------------------------|
| 7%                  | 35% min.             | NA                     |
| Thickness Decrease@ | Compression 7251 psi | Sealability            |
| @75ºF 10%           | @480°F 30%           | <0.2 ml/min            |
| Thickness Increase  | after immersion in   | Density                |
| Sulfuric Acid 2%    | Nitric Acid 7%       | 125 lb/ft <sup>3</sup> |

Top-Chem-2005 has TA-Luft (Clean Air) approval

60"L x 60"W 0.040" - 1/8"

### Klinger Top-Chem-2006

| Compressibility     | Recovery             | Creep Relaxation |
|---------------------|----------------------|------------------|
| 4%                  | 40% min.             | NA               |
| Thickness Decrease@ | Compression 7251 psi | Sealability      |
| @75ºF 10%           | @480°F 40%           | <0.1 ml/min      |
| Thickness Increase  | after immersion in   | Density          |
| Sulfuric Acid NA    | Nitric Acid 7%       | 181 lb/ft³       |

Top-Chem-2006 has TA-Luft (Clean Air) approval.

60"L x 60"W 1/16" - 1/8"

### Klinger Soft-Chem

| Compressibility    | Recovery               | Creep Relaxation |
|--------------------|------------------------|------------------|
| 60%                | 12% min.               | 35%              |
| Thickness Decrease | Vaccum - full pressure | Sealability      |
| @572ºF 28.6%       | 3000 psi               | <0.002 ml/hr     |
| Thickness Increase | Gas leakage            | Density          |
| @3625 psi 37%      | 0.12 ml/min.           | 53.1 lb/ft³      |

Softest sheet for non-metallic flanges handling chemicals



### **Robchem CF-500**

### PTFE Reinforced with Glass - University

CF-500 offers excellent chemical resistance, reduced creep, anti-stick performance and low material porosity. Ideal choice for various industries including pulp & paper, aerospace, petrochemical, steel, power generation, pharmaceutical. etc.











### **Robchem CF-504**

### PTFE Reinforced with Glass - Low Torqu

A highly compressible PTFE material reinforced with glass fiber and glass microspheres making it suitable for low bolt load applications. CF-504 has excellent chemical resistance, reduced cold flow and good antistick performance.











### **Robchem CF-510**

### **PTFE Reinforced with Glass - Strong Chemicals**

A PTFE based material reinforced with glass fiber, CF-510 exhibits ultra low deformation characteristics, excellent chemical resistance, reduced cold flow and good anti-stick performance. An ideal choice for use with sodium hydroxide.



PTFE BASED MATERIALS









### **Robco Sealon**

### **PTFE and Glass - Premium Grade**

This premium grade material is a blend of pure PTFE and glass fiber produced to your size requirements. Provides increased resistance to wear, and deformation under load and low coefficient of thermal expansion.







### **Robco Virgin PTFE**

#### **Pure PTFE Sheet**

A premium grade material recommended for applications requiring high dielectric strength and resistance to strong chemicals and solvents. Virgin PTFE exhibits the lowest coefficient of friction of all materials. Available in continuous length skived tape.











|                  |               | Robenem Cr-500   |
|------------------|---------------|------------------|
| Compressibility  | Recovery      | Creep Relaxation |
| 4%               | 44% min.      | 6%               |
| Tensile Strength | Max. Pressure | Sealability      |
| 2660 psi         | 1200 psi      | <0.009 ml/min    |
| Min. Temp.       | Max. Temp.    | Specific Gravity |
| -450ºF           | 500°F         | 2.3              |

Ideal choice for a wide range of industries

Shore D2 **61** 

60"L x 60"W

0.015" - 0.375"

### Robchem CF-504

| Compressibility  | Recovery      | Creep Relaxation |
|------------------|---------------|------------------|
| 25%              | 30% min.      | 30%              |
| Tensile Strength | Max. Pressure | Sealability      |
| 2100 psi         | 800 psi       | <0.007 ml/min    |
| Min. Temp.       | Max. Temp.    | Specific Gravity |
| -450°F           | 500°F         | 2.1              |

Suitable for low bolt load applications

Shore D2 **57** 

← 60″L x 60″W

0.015" - 0.375"

### Robchem CF-510

| Compressibility  | Recovery      | Creep Relaxation |
|------------------|---------------|------------------|
| 4%               | 50% min.      | 6%               |
| Tensile Strength | Max. Pressure | Sealability      |
| 2307 psi         | 1200 psi      | <0.007 ml/min    |
| Min. Temp.       | Max. Temp.    | Specific Gravity |
| -450°F           | 500°F         | 2.02             |

Excellent chemical resistance

Shore D2 **61** 



60"L x 60"W



### Robco Sealon

|                  |            | 110000 Scalott   |
|------------------|------------|------------------|
| Compressibility  | Recovery   | Creep Relaxation |
| NA               | NA.        | NA               |
| Tensile Strength | Elongation | Sealability      |
| 2500 psi         | 200%       | NA               |
| Min. Temp.       | Max. Temp. | Specific Gravity |
| -450ºF           | 500°F      | 2.24             |

Filled PTFE for general applications

Shore D 63



48"L x 48"W 1/16" - 1/8"



**Robco Virgin PTFE** 

| Compressibility  | Elongation    | Creep Relaxation |
|------------------|---------------|------------------|
| NA               | 200%          | NA               |
| Tensile Strength | Max. Pressure | Sealability      |
| 3000 psi         | NA            | NA               |
| Min. Temp.       | Max. Temp.    | Specific Gravity |
| -400°F           | 500°F         | 2.16             |

Resistance to strong chemicals and solvents

Shore D 54



← 48″L x 48″W



# RUBBER MATERIALS

### **Robco Jointex**

### **Shapeable PTFE**

Thick tape formed with an adhesive backing for universal installation. Offers the unique properties of expanded PTFE to create an effective seal at low bolt loads and conform to flange imperfections. Jointex does not support bacterial growth or cause product contamination: FDA compliant.



### Robco 435F

### **Red Rubber**

Robco 435 red rubber is an SBR-based fabric-finished, composition rubber sheet. A general purpose plant maintenance material recommended for air, hot or cold water and low pressure saturated steam applications.









### Robco 460

#### **Natural Pure Gum Rubber**

Robco 460 Pure Gum, or natural rubber, has superior resistance to tear and abrasion, flexibility at low temperatures, high tensile strength and excellent resiliency. Applications include chute linings, low temperature belting, cemented sleeves, etc.



### Robco 464

### **Black SBR**

Robco 464 is a general purpose SBR sheet with good abrasion resistance, impact strength, resilience and flexibility at low temperatures. Suitable for scrapers, conveyor skirtboards, blast mats and other abrasive applications.







### Robco 465

### Polychloroprene (Neoprene) - 50 Duro

Good inherent resistance to fungus, flame, weather, ozone and natural aging; moderate resistance to oil and gasoline; good resistance to alkalis and acids. Applications include gaskets and washers for industrial processes and seals for doors and windows.











### **Robco Jointex**

| Low Temperature | High Temperature | Max. Pressure |
|-----------------|------------------|---------------|
| -321ºF          | 500°F            | 2000 psi      |

Easy installation and outstanding chemical resistance

| 1/8"             | 3/16" | 1/4" | 3/8″ | 1/2" | 5/8″ | 3/4" | 3/4" | 1″  |
|------------------|-------|------|------|------|------|------|------|-----|
| <b>100</b> ′     | 75′   | 50′  | 25′  | 15′  | 15′  | 15′  | 15′  | 15′ |
| <u>())</u> 1000′ | 750′  | 500′ | 250′ | 150′ | 150′ | 100′ | 90′  | 75′ |

### Robco 435F

| Temperature Range   | Compression Set    | Specific Gravity       |
|---------------------|--------------------|------------------------|
| -22ºF - 180ºF       | 50% Max.           | 112 lb/ft <sup>3</sup> |
| Max. Hardness       | Tensile Strength   | Elongation             |
| 75 Duro             | 600 psi Min.       | 100% Min.              |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation  |
| ±15 points Max.     | ±30% Max.          | -50% Max.              |

Low cost material for basic applications

ASTM D2000 1AA806Z1



🔊 36"W - 48"W 🗍 1/16" - 1/4"



#### Robco 460

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22°F - 185°F       | 50% Max.           | 66 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 40 Duro             | 2500 psi Min.      | 400% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

High resiliency at low temperature

Shore A 40

ASTM D2000 2AA425A13F17



→0 48″W 「



### Robco 464

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22°F - 180°F       | 80% Max.           | NA                    |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 500 psi Min.       | 300% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| NA                  | NA                 | NA                    |

Low cost general purpose

Shore A 60





### Robco 465

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22°F - 200°F       | 80% Max.           | 77 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 50 Duro             | 1000 psi Min.      | 300% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±15% Max.          | -50% Max.             |

First choice for moderate applications

Shore A 50

ASTM D2000 1BC510







### Polychloroprene (Neoprene) - 60 Duro

Good inherent resistance to fungus, flame, weather, ozone and natural aging; moderate resistance to oil and gasoline; good resistance to alkalis and acids. Applications include gaskets and washers for industrial processes and seals for doors and windows.









Polychloroprene (Neoprene) - 70 Duro

# Robco 467

Good inherent resistance to fungus, flame, weather, ozone and natural aging; moderate resistance to oil and gasoline; good resistance to alkalis and acids. Applications include gaskets and washers for industrial processes and seals for doors and windows.









### **Robco 9370**

### **White Nitrile**

Robco 9370 is a powder-free white nitrile that has excellent resistance to petroleum-based hydraulic fluids and good resistance to acids and alkalis. This FDA grade material is recommended for service in pharmaceuticals, food industry and other purity sensitive applications.



RUBBER MATERIALS











### **Robco 9863**

### **Nitrile**

Robco 9863 Nitrile has very good resistance to oil and gasoline; superior resistance to petroleum-based hydraulic fluids; good resistance to hydrocarbon solvents; good resistance to alkalis and acids. Ideal for applications where oil resistance is imperative.









### Robco EP-60

### **EPDM**

Excellent resistance to heat, ozone, sunlight. Good low temperature flexibility; superior resistance to water and steam; good resistance to alkalis, acids and oxygenated solvents. Besides gaskets, applications include any type of weather stripping. Avoid contact with hydrocarbon fluids.













Robco 466

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22°F - 200°F       | 80% Max.           | 82 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 1000 psi Min.      | 300% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

First choice for moderate applications

Shore A 60

ASTM D2000 1BC610





| _ ∩ ~ |        | 467  |
|-------|--------|------|
| - 60  |        | 4n / |
| - 110 | $\sim$ | 707  |

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22ºF - 200ºF       | 80% Max.           | 82 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 70 Duro             | 1000 psi Min.      | 200% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

First choice for moderate applications

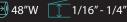
Shore **70** 

ASTM D2000 1BC710





### Robco 9370.


| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -40°F - 200°F       | 50% Max.           | 87 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 1000 psi Min.      | 300% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

Meets FDA requirements for common applications

Shore 60

ASTM D2000 1BF610





### Robco 9863

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -40°F - 200°F       | 25% Max.           | 72 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 2500 psi Min.      | 350% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

First choice for contact with hydrocarbons

Shore 60

2BG625B14EA14E





#### Robco EP-60

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -40°F - 250°F       | 50% Max.           | 75 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 800 psi Min.       | 300% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| +10 points Max.     | -25% Max.          | -25% Max.             |

Good acid and weather resistance

Shore 60

**ASTM D2000** 3BA608A14C12F17







### **Robco EPP-60**

### **Peroxide-Cured EPDM**

Robco EPP-60 peroxide-cured EPDM is an economical alternative to Viton®, PTFE and silicone in certain applications involving chemicals at elevated temperatures.







### **Robco SIL-60**

### **Grey/Red/White Silicone**

Ideal where low bolt load is necessary and high temperature resistance is required. Resistant to moderate chemicals, ozone, UV. Also available in FDA grade material for high temperature food and pharmaceutical applications.











### Robco VI-75



#### Viton®

Robco VI-75 Viton is made from 100% Dupont Performance Elastomer FKM polymer. Resistant to all aromatic, aliphatic and halogenated hydrocarbons plus many acids as well as animal and vegetable oils.



RUBBER MATERIALS









Viton®is a registered trademark of DuPont Performance Elastomers L.L.C..

### Robco 423-SBR-CI



#### **Cloth Inserted**

Robco 423 CI standard cloth inserted sheet is made from SBR reinforced with polyester fabric. More tear resistant than homogenous rubber, Robco 423 Cl is suitable for low pressure saturated steam, hot or cold water, air and gas applications.







### **Robco 2919**

### **Neoprene Coated Polyester**

A very thin, lightweight material used to make protective boots/bellows and protective covers. Robco 2919 makes a far more durable cover than any other type of weather resistant product.











### Robco EPP-60

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -55°F - 300°F       | NA                 | NA                    |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 1800 psi Min.      | 400% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| NA                  | NA                 | NA                    |

Acid resistant

ASTM D2000 Shore **60** M4CA610A25C32EA14F19

→ 36"- 48"W ↑ 1/16" - 1/4"

#### Robco SI-60

| Temperature Range   | Tear Resistance    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -80°F - 450°F       | 100 ppi            | 90.5 lb/ft³           |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 60 Duro             | 700 psi Min.       | 350% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| NA                  | NA                 | NA                    |

Soft material for high temperature applications

Shore A 60





### Robco VI-75

| Temperature Range   | Compression Set    | Specific Gravity       |  |
|---------------------|--------------------|------------------------|--|
| -13°F - 392°F       | NA                 | 120 lb/ft <sup>3</sup> |  |
| Max. Hardness       | Tensile Strength   | Elongation             |  |
| 75 Duro             | 1200 psi Min.      | 250% Min.              |  |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation  |  |
| NA                  | NA                 | NA                     |  |

Soft resilient material with high chemical resistance

Shore A **75** 



**⇒**Ø 36″W



### Robco 423-CI

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -20°F - 180°F       | 50% Max.           | 94 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 80 Duro             | 500 psi Min.       | 100% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| ±15 points Max.     | ±30% Max.          | -50% Max.             |

General purpose / high tensile

Shore 80

ASTM D2000



→ 36"W - 48"W



### Robco 2919

| Temperature Range   | Tearing Strength Specific Grav |                       |
|---------------------|--------------------------------|-----------------------|
| -40°F - NA          | 40 - 90 lbs                    | 11 lb/ft³             |
| Max. Hardness       | Breaking Strength              | Elongation            |
| NA                  | 360 - 640 lbs                  | 100% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile             | Heat Aging:Elongation |
| NA                  | NA                             | NA                    |

For fabrication purposes





### **Robco 5700**



### **Neoprene & Nylon Diaphram**

A premium quality sheet made from high grade neoprene reinforced with nylon fabric. Robco 5700 is recommended for use where neoprene's physical and chemical properties in combination with nylon's strength are required.









### **Robco 5717**



### **Neoprene & Polyester Diaphragm**

Made from high grade neoprene reinforced with polyester fabric. A superior quality diaphragm material with high burst strength and flexibility. Recommended for applications that require the flexibility of polyester and good oil resistance.









### Robco 602



### **Closed-Cell Neoprene Sponge**

Soft density neoprene, closed-cell sponge material for gaskets, weather stripping as well as sound and vibration damping. This product is available in extruded profiles, sheet or strips with or without pressure sensitive adhesive (PSA) backing.











### **Robco 1523**



### **General Purpose Open-Cell Sponge**

A natural open-cell sponge rubber with excellent abrasion resistance, compressibility and good dry sealing properties. Readily absorbs liquids and gases. Available in sheets, strips or die cut parts with or without adhesive backing.



### Robco SC-41



### Soft Density, Closed-Cell Sponge

SC-41 is a PVC/NBR/Neoprene elastomeric sponge with moderate compression-deflection and fine cell structure. Meets required specifications for automotive, truck and appliance gasketing applications. Available with Pressure Sensitive Adhesives (PSA).











### Robco 5700

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -31ºF - 212ºF       | 35% Max.           | 88 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 70 Duro             | 1400 psi Min.      | 250% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| +15 points Max.     | -15% Max.          | -40% Max.             |

### Premium diaphragm Material

Shore A 70





### Robco 5717

| Temperature Range   | Compression Set    | Specific Gravity      |
|---------------------|--------------------|-----------------------|
| -22ºF - 212ºF       | 35% Max.           | 97 lb/ft³             |
| Max. Hardness       | Tensile Strength   | Elongation            |
| 70 Duro             | 1400 psi Min.      | 250% Min.             |
| Heat Aging:Hardness | Heat Aging:Tensile | Heat Aging:Elongation |
| +15 points Max.     | -15% Max.          | -40% Max.             |

#### Economical diaphragm

Shore A 70

ASTM D2000

2BC714A14B 14EO14EO34





### Robco 602


| Temperature Range | Compression Set        | Density          |
|-------------------|------------------------|------------------|
| -40°F - 150°F     | 25% Max.               | 7 - 11 lb/ft³    |
| Tear Strength     | Tensile Strength       | Elongation       |
| 14 lb/in          | 90 psi Min.            | 150% Min.        |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption |
| ±30%              | 5 psi Min 9 psi Max.   | 5% Max.          |

For gaskets, stripping, sound and vibration damping

ASTM D1056-07







### **Robco 1523**

| Temperature Range | Compression Set        | Density          |
|-------------------|------------------------|------------------|
| -20°F - 160°F     | 15% Max.               | 26 lb/ft³        |
| Max. Hardness     | Tensile Strength       | Elongation       |
| 45 Duro ±10       | NA                     | NA               |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption |
| ±20%              | 5 psi Min 10 psi Max.  | NA               |

Excellent abrasion resistance and compressibility properties

Shore 00 **35-45** 







#### Robco SC-41

| Temperature Range | Compression Set Density |                  |
|-------------------|-------------------------|------------------|
| -20°F - 180°F     | 25% Max.                | 3.5 - 5.0 lb/ft³ |
| C-Tear Strength   | Tensile Strength        | Elongation       |
| 10 lb/in Min.     | 50 psi Min.             | 75% Min.         |
| Heat Aging:CD     | Comp. Deflection @ 25%  | Water Absorption |
| NA                | 2 psi Min 5 psi         | NA               |

Appropriate for automotive, truck and appliance gasketing

Shore 00 **20-40** ASTM D1056







# Robco SC-42

### Medium density, Closed-Cell Sponge

SC-42 is a PVC/NBR/Neoprene elastomeric sponge material, ideal for gaskets, weather stripping as well as sound and vibration damping. Available in extruded profiles, sheet or strips with or without pressure sensitive adhesive (PSA) backing.







### Robco SC-43

### Firm density, Closed-Cell Sponge

SC-43 is a PVC/NBR/Neoprene elastomeric sponge material, suitable for gaskets, weather stripping as well as sound and vibration damping. Available in extruded profiles, sheet or strips with or without pressure sensitive adhesive (PSA) backing.







### **Robco White Silicone**

### Stability at high temperatures

Premium quality material used where highly compressible gaskets are required at temperatures up to 500°F. The cellular structure is produced without the use of CFCs resulting in less damage to the environment.











# Robco Microcellular Urethane

### Superior Foam/Sponge

Offers enhanced recovery over other types of foam and sponge, resulting in a superior seal, particularly in low seat stress applications. This material exhibits resistance to UV exposure, ozone and is environmentally safe and clean. An excellent choice for seals, gaskets and spacers used in electronic equipment.











Available in soft, medium and firm density.

### **Robco 100N**

#### **Neoprene and Cork**

An extremely durable medium grade neoprene and cork material with superior tensile and tear strength; highly oil resistant. Ideal for transformer sealing applications.



www.robco.com

|                   |                        | NUDCU 3C-42      |
|-------------------|------------------------|------------------|
| Temperature Range | Compression Set        | Density          |
| -20°F - 180°F     | 25% Max.               | 6 - 8 lb/ft³     |
| Tear Strength     | Tensile Strength       | Elongation       |
| 15 lb/in          | 75 psi Min.            | 100% Min.        |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption |
| NA                | 5psi Min 9psi Max.     | NA               |

For gaskets, stripping, sound and vibration damping

**ASTM D1056** Shore 00 **35-50** 

| _ك | <br>4 |
|----|-------|
|    |       |



| Robco | SC | -43 |
|-------|----|-----|
|-------|----|-----|

| Temperature Range | Compression Set        | Density          |
|-------------------|------------------------|------------------|
| -40°F - 200°F     | 30% Max.               | 9 lb/ft³         |
| Max. Hardness     | Tensile Strength       | Elongation       |
| 60 Duro           | 71 psi Min.            | 150 %            |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption |
| ±30%              | 9psi Min 13psi Max.    | 5% by/wt Max.    |

For gaskets, stripping, sound and vibration damping

ASTM D1056 Shore 00 **60** 

2A3

72"L x 42"W 1/8" - 1"

### Robco White Silicone

| Temperature Range | Compression Set        | Density                 |
|-------------------|------------------------|-------------------------|
| -67°F - 500°F     | 25% Max.               | 0.02 lb/ft <sup>3</sup> |
| Max. Hardness     | Tensile Strength       | Elongation              |
| NA                | 90 psi Min.            | 200 %                   |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption        |
| NA                | 6psi Min 14psi Max.    | 5% by/wt Max.           |

Profile extrusions, sheeting, jointed rings, punched forms



### Robco Microcellular Urethane

| Temperature Range | Compression Set        | Density          |
|-------------------|------------------------|------------------|
| -40°F - 194°F     | 5% Max.                | 17 lb/ft³        |
| Max. Hardness     | Tensile Strength       | Elongation       |
| 12 Duro           | 40 psi Min.            | 100 %            |
| Heat Aging:CD     | Comp. Deflection @ 25% | Water Absorption |
| NA                | NA                     | NA               |

Perfect choice for vibration & impact damping

Shore O **12** 





### Robco 100N

| Compression Set    | Recovery           | Density             |
|--------------------|--------------------|---------------------|
| 60% Max.           | 75% min.           | 45 lb/ft³           |
| Max. Hardness      | Tensile Strength   | Flexibility         |
| 70 Duro            | 250 psi            | 2 Max. (Factor)     |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |
| ASTM Oil 1 10%     | ASTM Fuel A 15%    | 35%                 |

#1 choice for transformers

Shore A **50 - 70** 













### Robco E-30



### **Most Economical Cork Gasket**

E-30 is an economical neoprene and cork material. Suitable for sealing at low bolting pressures in a wide variety of applications.



### Robco E-40



### **Neoprene and Cork**

E-40 is an excellent medium grade neoprene and cork material used for oil and transmission seals and automotive gaskets. A high-quality material with medium compressibility and oil resistance.



### Robco E-50

### General purpose Neoprene and Cork

Firm grade neoprene and cork with high tensile strength and tear resistance and low compression set. E-50 has excellent heat resistance and moderate swelling in oils and fuels. Also suitable for high bolting pressure.



CORK / RUBBER MATERIALS



### **Robco E-70**



### **Co-Polymer and Cork**

### An economical sealing material, E-70 is a soft grade co-polymer and cork material with moderate resistance to fuels. Commonly used in transformers and automotive and industrial applications.



### **Robco FKS**



### **Beater Add Gasket Sheet**

Made from cellulose fiber and fine grain cork with an SBR binder. FKS is extremely compressible, conforming well to rough surfaces. Recommended for use in water and oil applications.





Robco E-30

| Compression Set    | Recovery           | Density             |
|--------------------|--------------------|---------------------|
| 60% Max.           | 95% min.           | 33 lb/ft³           |
| Max. Hardness      | Tensile Strength   | Flexibility         |
| 65 Duro            | 150 psi Min.       | 3 Max. (Factor)     |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |
| ASTM Oil 1 10%     | ASTM Fuel A NA     | 50%                 |

Most economical cork gasket

Shore **50 - 65** 

36"L x 36"W 1/8" - 1/4"

| _ |        |   |   |               |   | _  |   |
|---|--------|---|---|---------------|---|----|---|
| P | $\sim$ | h | _ | $\overline{}$ | ч | F- | л |
|   |        |   |   |               |   |    |   |

|                    |                    | NODCO E-40          |
|--------------------|--------------------|---------------------|
| Compression Set    | Recovery           | Density             |
| 60% Max.           | 80% min.           | 44 lb/ft³           |
| Max. Hardness      | Tensile Strength   | Flexibility         |
| 75 Duro            | 250 psi Min.       | 3 Max. (Factor)     |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |
| ASTM Oil 1 20%     | ASTM Fuel A 15%    | 35%                 |

For oil sealing, transmissions and automotive gaskets

Shore A **55-75** 





|                    |                    | NODEO E 30          |
|--------------------|--------------------|---------------------|
| Compression Set    | Recovery           | Density             |
| 55% Max.           | 75% min.           | 46 lb/ft³           |
| Max. Hardness      | Tensile Strength   | Flexibility         |
| 70 Duro            | 250 psi Min.       | 3 Max. (Factor)     |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |
| ASTM Oil 1 20%     | ASTM Fuel A 15%    | 25%                 |

General purpose

Shore A 10 - 70

|               |             | =    |
|---------------|-------------|------|
| $\rightarrow$ | 26// 26//// | 1 1  |
|               | 36"L x 36"W | 1.1. |
|               |             |      |


Robco E-70

/16" - 1/4"

| Compression Set    | Recovery           | Density             |
|--------------------|--------------------|---------------------|
| 60% Max.           | 75% min.           | 43 lb/ft³           |
| Max. Hardness      | Tensile Strength   | Flexibility         |
| 70 Duro            | 200 psi Min.       | 1 Max. (Factor)     |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |
| ASTM Oil 1 10%     | ASTM Fuel A 10%    | 45 %                |

Used in transformers and most industrial applications

Shore A **60 - 70** 





### Robco FKS

| Compressibility                       | Recovery         | Creep Relaxation |  |
|---------------------------------------|------------------|------------------|--|
| 33%                                   | 38% min.         | NA               |  |
| Tensile Strength                      | Max. Temperature | Density          |  |
| 1241 psi                              | 300°F            | 40 lb/ft³        |  |
| Thickness Increase after immersion in |                  |                  |  |
| ASTM Oil IRM 18%                      | ASTM Fuel B 18%  | Water 17%        |  |

Low pressure, Fuel and oil resistance







### Robco GRC-36



### **Economy Grade**

An economical grade cork co-polymer with medium fuel and oil resistance and medium compressibility. Ideal for the automotive aftermarket.





### Robco H-35



### Nitrile and Cork - Roll

Top quality nitrile and cork material that is highly compressible with good sealing capability at low bolting pressure. Resistant to oil, aromatic fuel and solvent.





### **Robco H-45**



### Nitrile and Cork - Sheet

Top quality nitrile and cork material that is compressible with good sealing capability at low bolting pressure. Highly resistant to oil, aromatic fuel and solvent.





### **Robco H-55**



### **Nitrile and Cork**

A nitrile and cork material with high tensile and tear strength. Perfect for high bolting pressure seals including those recommended for automotive, fuel pumps, meters and general industrial applications.





### Robco N104

### **Economical Cork Sheet**

Bonded cork sheet recommended as a lining and facing material, for sporting goods, bulletin boards and die cut parts.



### Robco GRC-36

| Compression Set    | Recovery            | Density         |  |  |  |  |
|--------------------|---------------------|-----------------|--|--|--|--|
| 70% Max.           | 80% min.            | 30 lb/ft³       |  |  |  |  |
| Max. Hardness      | Tensile Strength    | Flexibility     |  |  |  |  |
| 60 Duro            | 140 psi Min.        | 1 Max. (Factor) |  |  |  |  |
| Thickness Increase | Max. Comp. @ 400psi |                 |  |  |  |  |
| ASTM Oil 1 10%     | ASTM Fuel A 10%     | 55%             |  |  |  |  |

Ideal for the automotive aftermarket

Shore A **50 - 60** 



|                    |                     | 11000011 33     |  |  |  |
|--------------------|---------------------|-----------------|--|--|--|
| Compression Set    | Recovery            | Density         |  |  |  |
| 80% Max.           | 80% min.            | 33 lb/ft³       |  |  |  |
| Max. Hardness      | Tensile Strength    | Flexibility     |  |  |  |
| 60 Duro            | 250 psi Min.        | 3 Max. (Factor) |  |  |  |
| Thickness Increase | Max. Comp. @ 400psi |                 |  |  |  |
| ASTM Oil 1 10%     | ASTM Fuel A 10%     | 45 %            |  |  |  |

Resistance to oil, fuels and solvents

Shore A **10 - 60** 





|                    |                    | KODCO H-35          |  |  |  |
|--------------------|--------------------|---------------------|--|--|--|
| Compression Set    | Recovery           | Density             |  |  |  |
| 80% Max.           | 75% min.           | 8 lb/ft³            |  |  |  |
| Max. Hardness      | Tensile Strength   | Flexibility         |  |  |  |
| 65 Duro            | 250 psi Min.       | 3 Max. (Factor)     |  |  |  |
| Thickness Increase | after immersion in | Max. Comp. @ 400psi |  |  |  |
| ASTM Oil 1 10%     | ASTM Fuel A 15%    | 35 %                |  |  |  |

High resistance to oil, fuels and solvents

Shore A **10 - 65** 



36"L x 36"W 1/32" - 1/2"



### Robco H-55

| Compression Set    | Recovery            | Density               |  |  |  |  |
|--------------------|---------------------|-----------------------|--|--|--|--|
| 55% Max.           | 75% min.            | 46 lb/ft <sup>3</sup> |  |  |  |  |
| Max. Hardness      | Tensile Strength    | Flexibility           |  |  |  |  |
| 80 Duro            | 250 psi Min.        | 3 Max. (Factor)       |  |  |  |  |
| Thickness Increase | Max. Comp. @ 400psi |                       |  |  |  |  |
| ASTM Oil 1 10%     | ASTM Fuel A 10%     | 25 %                  |  |  |  |  |

Perfect for high bolting pressure seals

Shore A **60 - 80** 



→ 36″L x 36″W



\_\_\_ 1/32" - 1/2"

### Robco N104

| Max.Temperature    | Recovery                  | Density                 |  |  |  |  |
|--------------------|---------------------------|-------------------------|--|--|--|--|
| 250ºF              | 80% min.                  | 13.7 lb/ft <sup>3</sup> |  |  |  |  |
| Max. Hardness      | Tensile Strength          | Flexibility             |  |  |  |  |
| NA                 | 75 psi Min. 5 Max. (Facto |                         |  |  |  |  |
| Thickness Increase | Max. Comp. @ 100psi       |                         |  |  |  |  |
| NA                 | NA                        | 40 %                    |  |  |  |  |

Economical cork sheet for non-gasket applications







# **OTHER PRODUCTS**

### Robco Transilcor



#### Silicone and Cork

Transilcor is a premium silicone and cork material with medium compressibility and good oil resistance. A superior silicone base material for medium bolting pressure with excellent thermal stability.



**CORK / RUBBER MATERIALS** 



# **Robco Hydroil**



### **Vegetable Fiber Sheet**

Hydroil provides fair sealability, good conformability and good resistance to petroleum oils, fuel oils and many organic solvents. This cellulose fiber gasket material with a protein and glycerin binder is an low-cost light duty, general purpose gasket material. Not intended for sealing water where exposure to drying exists.







Meets MIL-G-12803A Id No. P3313B and MIL-G-12803B/C Id No. F326128M6 specifications



Robco Transilcor

| Compression Set    | Recovery            | Density               |  |  |  |
|--------------------|---------------------|-----------------------|--|--|--|
| 70% Max.           | 80% min.            | 50 lb/ft <sup>3</sup> |  |  |  |
| Max. Hardness      | Tensile Strength    | Flexibility           |  |  |  |
| 75 Duro            | 350 psi Min.        | 3 Max. (Factor)       |  |  |  |
| Thickness Increase | Max. Comp. @ 400psi |                       |  |  |  |
| ASTM Oil 1 10%     | ASTM Fuel A 20%     | 28 %                  |  |  |  |

**Excellent thermal stability** 

Shore A **60 - 70** 



36"L x 36"W



### Robco Hvdroil

| · · · · · · · · · · · · · · · · · · · |                     |         |  |  |  |  |  |  |  |  |
|---------------------------------------|---------------------|---------|--|--|--|--|--|--|--|--|
| Max. Temperature                      | Max. Pressure       | Density |  |  |  |  |  |  |  |  |
| 250⁰F                                 | 2000 psi            | NA      |  |  |  |  |  |  |  |  |
| Thickness Increase                    | Max. Comp.          |         |  |  |  |  |  |  |  |  |
| ASTM Oil 3 5%                         | ASTM Fuel B 5%      | 40%     |  |  |  |  |  |  |  |  |
| Weight Increase a                     | Max. Comp. @ 400psi |         |  |  |  |  |  |  |  |  |
| ASTM Oil 3 15%                        | ASTM Fuel B 15%     | 15 %    |  |  |  |  |  |  |  |  |

Low cost gasket material.



€ 36″W 1



0.01" - 1/8"

### **Boiler Gaskets**

Handhole and manhole gaskets



Robco provides various types of gaskets for boilers, heaters and other high temperature and/or high pressure vessels.

### **Rubber Mats**

Mats for Industrial, Commercial, Food Service, Static and Electrical Applications



Our rubber sheeting can be cut and manufactured as floor and surface matting specific to your application with machined groves, holes, patterns, etc. per your specifications.

### **Small Parts**

**Grommets, O-Rings, Washers** 



We manufacture small rubber parts such as grommets, o-rings, washers, spacers, stoppers and plugs to suit your needs.

### **Tubing**

Sleeves, Cords, Strips, Profiles and more...



Tubing, cord and profile parts can be ordered from our wide range of specialized rubber materials such as EPDM, Viton, NBR, Nitrile, Neoprene and so much more...

















HIGH PRESS

TFMP









HIGH LOW CAUSTIC CHEMICAL ACID TEMP **APPS** APPS APPS







APPS

OXYGEN

**APPS** 



APPS



OIL

APPS



WATER

APPS.



APPS.



IJV

**EXPOSURE** 



PIII P &

PAPER



FOOD

INDUSTRY





INDUSTRY INDUSTRY





AFRO-

SPACE















(\*typically in stock)

THICKNESS

Note: This brochure shows only the most commonly used products. Other materials and composites are available upon request. Contact your representative for technical and additional specifications.

**Disclaimer:** The data contained in this brochure is representative; These ratings supplied are suggested as a guideline and should only be used for evaluating your specific application. When in doubt, contact Robco. The information contained in this specification sheet should not be considered a warranty, either expressed or implied, including, but not limited to, a warranty of merchantability or fitness for a particular purpose. In no event shall Robco be liable for any incidental or consequential damages resulting from the use, misuse or inability to use the product. This exclusion applies regardless of whether such damages are sought based on breach of warranty, breach of contract, negligence, strict liability in tort, or any other legal theory.

|                      |                                 |                                 |                      |                        | <b>-</b>       | <b>\</b>       |              |                | $\bigcap^2$ | £3             | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٨                                                | 鱳                                                | O <sub>b</sub> | $\bigcirc$ | <b>*</b>                                         | <b>*</b>                                         |
|----------------------|---------------------------------|---------------------------------|----------------------|------------------------|----------------|----------------|--------------|----------------|-------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|------------|--------------------------------------------------|--------------------------------------------------|
| Category             | Style Number                    | Max Temp<br>°F                  | High<br>Temp<br>App. | High<br>Press.<br>App. | Acid           | Caustic        | Oil          | Chemical       |             | Steam          | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gas                                              | U.V.                                             | Ozone          | Oxidation  | Alkalis                                          | Hydro-<br>Carbons                                |
|                      |                                 | steam/liquid                    |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
| allic                | METAL JACKET                    | As per material                 | Ý                    |                        | 9              | 9              | ď            | 9              |             | Ý              | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            | ď                                                | ď                                                |
| i-Met                | CORRUGATED METAL ENVIROFLEX SWG | As per material As per material | <b>9</b>             | ď                      | ol'            | o d            | e di         | <b>9</b>       |             | <b>9</b>       | <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d                                                | -                                                |                |            |                                                  | <b>●</b>                                         |
| Semi-Metallic        | MAXIPROFILE SWG                 | As per material                 | •                    | ď                      | o <sup>t</sup> | 3              | 3            | 3              |             | 3              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                |                                                  |                |            | 3                                                | 3                                                |
| S                    | RING JOINT                      | As per material                 | 9"                   | ď                      |                |                | ⊌*           |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                                                |                                                  |                |            |                                                  | ď                                                |
| Flexible<br>Graphite | 200-HM                          | 1500                            | 9"                   |                        | 9              | o di           | *            | ď              | ď           | 9              | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            | ď                                                | ď                                                |
| Flex<br>Grap         | 204-SFI<br>210-STI              | 1500<br>1500                    | o d                  |                        | ol'            | <u> </u>       | e di         | e d'           | <b>₩</b>    | <b>♥</b>       | e di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |                                                  |                |            | <b>♥</b>                                         | ₩                                                |
|                      | TOP-SIL ML1                     | 400                             |                      |                        | _              | _              | 3            | 4              | _           |                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            | _                                                | _                                                |
|                      | QUANTUM                         | 660                             |                      |                        |                |                |              | 9              |             |                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  |                                                  |
| -                    | C-4300<br>C-4401                | 400-700<br>450-750              |                      |                        |                |                | ₩            | d              | A.          | <b>9</b>       | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  | <b>9</b>                                         |
| s                    | C-4408                          | 450-750                         |                      | ď                      |                |                | 3            | 3              | _           | 9              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                |                                                  |                |            |                                                  | •                                                |
| terial               | C-4409                          | 550-775                         |                      | ď                      |                |                | ď            | ď              |             | ø'             | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ď                                                |                                                  |                |            |                                                  | ď                                                |
| d Ma                 | C-4430                          | 500-800                         | <b>4</b>             |                        |                |                | <b>9</b>     | 9              | 9           | 9              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>9</b>                                         | <del>                                     </del> |                | 1          | -                                                | <b>9</b>                                         |
| Compressed Materials | C-4433<br>C-4439                | 500-800<br>500-800              | 3                    |                        |                |                | ď            | o <sup>t</sup> |             | el,            | og's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ď                                                |                                                  |                |            | <del>                                     </del> | *                                                |
| omp.                 | C-4500                          | 550-850                         | ď                    |                        |                | e <sup>*</sup> | ď            | ď              |             | ď              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                                                |                                                  |                |            |                                                  | *                                                |
| J                    | C-4509                          | 550-850                         | *                    | *                      |                | o o            | *            | 9              |             | ď              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                                                |                                                  |                |            |                                                  | ₫                                                |
|                      | C-5400<br>C-6400                | 400-725<br>400-725              |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> | -                                                |                |            | <del>                                     </del> | 1                                                |
|                      | C-7400                          | 400-675                         |                      |                        |                | ₫'             |              | 4              |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | C-8200                          | 300-400                         |                      |                        | o <sup>*</sup> | e e            | <del>'</del> | ď              |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  | e <sup>t</sup>                                   |
| Mica                 | MILAM PSS<br>THERMICA           | 1832<br>752                     | - ₹                  |                        |                |                | ď            | d              |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ď                                                |                                                  |                |            | -                                                | ď                                                |
|                      | SOFT-CHEM                       | 500                             | _                    |                        |                |                | _            | 3              | ₹           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  | 4                                                |
| į                    | TOP-CHEM 2000                   | 482                             |                      |                        | e e            | 9              | ₫            | ď              | 9           | ď              | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ď                                                |                                                  |                |            |                                                  | ₹                                                |
| als                  | TOP-CHEM 2003                   | 482<br>482                      |                      |                        | 9              | e e            | <b>9</b>     | el,            | 9           |                | of the state of th |                                                  |                                                  |                |            |                                                  | ₩                                                |
| nater                | TOP-CHEM 2005<br>TOP-CHEM 2006  | 482                             |                      |                        |                | <u> </u>       | o di         | 3              | 3           |                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                  |                |            |                                                  | 3                                                |
| PTFE based materials | ROBCHEM CF-500                  | 500                             |                      |                        | 9              | 6              | ď            | 4              |             | ď              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  | ď                                                |
| E ba                 | ROBCHEM CF-504                  | 500                             |                      |                        | 9              | o <sup>*</sup> | o v          | o i            |             | a <sup>k</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  | ď                                                |
| PTF                  | ROBCHEM CF-510<br>SEALON        | 500<br>500                      |                      |                        | 9              | 9              | 9            | 9              |             | 9              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            | -                                                | <b>*</b>                                         |
|                      | VIRGIN PTFE                     | 500                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | JOINTEX                         | 500                             |                      |                        |                |                |              | o o            |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
| ŀ                    | 435<br>460                      | 180<br>185                      |                      |                        |                |                |              |                |             |                | <b>♥</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                                  |                |            |                                                  | -                                                |
| ŀ                    | 464                             | 180                             |                      |                        |                |                |              |                |             |                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | 465                             | 200                             |                      |                        |                |                |              |                |             |                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  | ď              |            |                                                  |                                                  |
| -                    | 466<br>467                      | 200<br>200                      |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  | <b>9</b>       |            |                                                  |                                                  |
| rials                | 9370                            | 200                             |                      |                        |                |                |              |                |             |                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  | ₫'                                               |
| Mate                 | 9863                            | 200                             |                      |                        |                |                |              |                |             |                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  | ď                                                |
| Rubber Materials     | EP-60                           | 250                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 9                                                | 9              |            |                                                  |                                                  |
| Ru                   | EPP-60<br>SI-60                 | 300<br>450                      |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 3                                                | ď              |            |                                                  |                                                  |
|                      | VI-75                           | 362                             |                      |                        | ₫'             |                | 4            |                |             |                | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | ď                                                | ď              |            |                                                  | ď                                                |
|                      | 423-SBR-CI                      | 180                             |                      |                        |                |                |              |                |             |                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | 2919<br>5700                    | na<br>212                       |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  | ď              |            |                                                  |                                                  |
|                      | 5717                            | 212                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  | ď              |            |                                                  |                                                  |
|                      | 602                             | 150                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  | ₫'             |            |                                                  |                                                  |
| lbber                | 1523<br>SC-41                   | 160<br>180                      |                      |                        |                |                |              |                |             | -              | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                | o <sup>t</sup>                                   | ď              |            |                                                  |                                                  |
| Sponge Rubber        | SC-42                           | 180                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 4                                                | ď              |            |                                                  |                                                  |
| guod                 | SC-43                           | 180                             |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 9                                                | 9              |            |                                                  |                                                  |
| o)                   | WHITE SILICONE<br>M.C. URETHANE | -                               |                      |                        |                |                |              |                |             | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | e di                                             | <b>9</b>       | <u> </u>   |                                                  |                                                  |
|                      | 100N                            | -                               |                      |                        |                |                | <u> </u>     |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  | _              |            |                                                  | <u> </u>                                         |
| [                    | E-30                            | -                               |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | E-40<br>E-50                    | -                               |                      |                        |                |                |              |                |             | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                         |                | ļ          | <u> </u>                                         | -                                                |
| _                    | E-70                            | -                               |                      |                        |                |                | <b>V</b>     |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | -                                                |                |            | <del>                                     </del> | <del>                                     </del> |
| Cork / Rubber        | FKS                             | 300                             |                      |                        |                |                | ď            |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
| k/R                  | GRC-36                          | -                               |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                | 1          | <u> </u>                                         | <u> </u>                                         |
| Cor                  | H-35<br>H-45                    | -                               |                      |                        |                |                |              |                |             | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | -                                                |                |            | <del>                                     </del> | <del> </del>                                     |
|                      | H-55                            | -                               |                      |                        |                |                |              |                |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | N104                            | 250                             |                      |                        |                |                |              |                | -           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                  |                |            |                                                  |                                                  |
|                      | TRANSILCOR<br>HYDROIL           | -<br>250                        | 9                    |                        |                |                |              |                |             | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>                                         |                | 1          | -                                                | 1                                                |



### **Gasket & Rubber Specialists**

We are passionate about problem solving. We take pride in creating substantial value for our customers using our expertise, experience, and technical resources. We believe that given the opportunity, Robco can make a tremendous positive impact on our customers' operational efficiency by extending the time between equipment failures, eliminating recurring maintenance problems, reducing leaks, and generally alleviating headaches.

Since 1911, Robco products are used everywhere in heavy industry as components of original equipment and in aftermarket maintenance and repair.

ISO 9001 and ISO 14001 Certified, our commitment to focusing on engineered solutions has fostered an alignment between our customers' satisfaction and our success while caring for our environment.



### **Total Cost of Ownership**

Our T.C.O. approach to problem solving often results in our customers achieving annual savings that drastically outweigh their actual purchase costs.



# Made in Canada 🖊

Robco Gaskets are manufactured at our Edmonton, Toronto and Montreal facilities ensuring unsurpassed quality control and quick turnaround times for our North American customers.



Engineered Solutions since 1911

MONTREAL MISSISSAUGA EDMONTON Tel.: 514.367.2252 Fax: 514.367.1144
Tel.: 905.564.6555 Fax: 905.564.6901
Tel.: 780.469.0601 Fax: 780.469.0765

Email: info@robco.com

Heat Resistant Materials - Engineered Plastics - Rubber Products - Metallic Gaskets Soft Gaskets - Mechanical Seals - Compression Packing - Lubricants & Greases